Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurogastroenterol Motil ; 36(3): e14749, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316631

RESUMO

BACKGROUND: Gastric myoelectric signals have been the focus of extensive research; although it is unclear how general anesthesia affects these signals, and studies have often been conducted under general anesthesia. Here, we explore this issue directly by recording gastric myoelectric signals during awake and anesthetized states in the ferret and explore the contribution of behavioral movement to observed changes in signal power. METHODS: Ferrets were surgically implanted with electrodes to record gastric myoelectric activity from the serosal surface of the stomach, and, following recovery, were tested in awake and isoflurane-anesthetized conditions. Video recordings were also analyzed during awake experiments to compare myoelectric activity during behavioral movement and rest. KEY RESULTS: A significant decrease in gastric myoelectric signal power was detected under isoflurane anesthesia compared to the awake condition. Moreover, a detailed analysis of the awake recordings indicates that behavioral movement is associated with increased signal power compared to rest. CONCLUSIONS & INFERENCES: These results suggest that both general anesthesia and behavioral movement can affect the signal power of gastric myoelectric recordings. In summary, caution should be taken in studying myoelectric data collected under anesthesia. Further, behavioral movement could have an important modulatory role on these signals, affecting their interpretation in clinical settings.


Assuntos
Anestesia , Isoflurano , Animais , Isoflurano/farmacologia , Furões , Estômago , Eletrodos , Complexo Mioelétrico Migratório
2.
PLoS One ; 18(7): e0289076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37498882

RESUMO

Functional and motility-related gastrointestinal (GI) disorders affect nearly 40% percent of the population. Disturbances of GI myoelectric activity have been proposed to play a significant role in these disorders. A significant barrier to usage of these signals in diagnosis and treatment is the lack of consistent relationships between GI myoelectric features and function. A potential cause of this issue is the use of arbitrary classification criteria, such as percentage of power in tachygastric and bradygastric frequency bands. Here we applied automatic feature extraction using a deep neural network architecture on GI myoelectric signals from free-moving ferrets. For each animal, we recorded during baseline control and feeding conditions lasting for 1 h. Data were trained on a 1-dimensional residual convolutional network, followed by a fully connected layer, with a decision based on a sigmoidal output. For this 2-class problem, accuracy was 90%, sensitivity (feeding detection) was 90%, and specificity (baseline detection) was 89%. By comparison, approaches using hand-crafted features (e.g., SVM, random forest, and logistic regression) produced an accuracy from 54% to 82%, sensitivity from 46% to 84% and specificity from 66% to 80%. These results suggest that automatic feature extraction and deep neural networks could be useful to assess GI function for comparing baseline to an active functional GI state, such as feeding. In future testing, the current approach could be applied to determine normal and disease-related GI myoelectric patterns to diagnosis and assess patients with GI disease.


Assuntos
Furões , Redes Neurais de Computação , Animais , Trato Gastrointestinal , Algoritmo Florestas Aleatórias
3.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36865110

RESUMO

BACKGROUND: Gastrointestinal myoelectric signals have been the focus of extensive research; although it is unclear how general anesthesia affects these signals, studies have often been conducted under general anesthesia. Here, we explore this issue directly by recording gastric myoelectric signals during awake and anesthetized states in the ferret and also explore the contribution of behavioral movement to observed changes in signal power. METHODS: Ferrets were surgically implanted with electrodes to record gastric myoelectric activity from the serosal surface of the stomach, and, following recovery, were tested in awake and isoflurane-anesthetized conditions. Video recordings were also analyzed during awake experiments to compare myoelectric activity during behavioral movement and rest. KEY RESULTS: A significant decrease in gastric myoelectric signal power was detected under isoflurane anesthesia compared to the awake condition. Moreover, a detailed analysis of the awake recordings indicates that behavioral movement is associated with increased signal power compared to rest. CONCLUSIONS & INFERENCES: These results suggest that both general anesthesia and behavioral movement can affect the amplitude of gastric myoelectric. In summary, caution should be taken in studying myoelectric data collected under anesthesia. Further, behavioral movement could have an important modulatory role on these signals, affecting their interpretation in clinical settings.

4.
Front Physiol ; 14: 1077207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744037

RESUMO

Nausea is a common disease symptom, yet there is no consensus regarding its physiological markers. In contrast, the process of vomiting is well documented as sequential muscular contractions of the diaphragm and abdominal muscles and esophageal shortening. Nausea, like other self-reported perceptions, is difficult to distinguish in preclinical models, but based on human experience emesis is usually preceded by nausea. Here we focused on measuring gastrointestinal and cardiorespiratory changes prior to emesis to provide additional insights into markers for nausea. Felines were instrumented to chronically record heart rate, respiration, and electromyographic (EMG) activity from the stomach and duodenum before and after intragastric delivery of saline or copper sulfate (CuSO4, from 83 to 322 mg). CuSO4 is a prototypical emetic test agent that triggers vomiting primarily by action on GI vagal afferent fibers when administered intragastrically. CuSO4 infusion elicited a significant increase in heart rate, decrease in respiratory rate, and a disruption of gastric and intestinal EMG activity several minutes prior to emesis. The change in EMG activity was most consistent in the duodenum. Administration of the same volume of saline did not induce these effects. Increasing the dose of CuSO4 did not alter the physiologic changes induced by the treatment. It is postulated that the intestinal EMG activity was related to the retrograde movement of chyme from the intestine to the stomach demonstrated to occur prior to emesis by other investigators. These findings suggest that monitoring of intestinal EMG activity, perhaps in combination with heart rate, may provide the best indicator of the onset of nausea following treatments and in disease conditions, including GI disease, associated with emesis.

5.
Sci Rep ; 11(1): 12925, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155231

RESUMO

Dysfunction and diseases of the gastrointestinal (GI) tract are a major driver of medical care. The vagus nerve innervates and controls multiple organs of the GI tract and vagus nerve stimulation (VNS) could provide a means for affecting GI function and treating disease. However, the vagus nerve also innervates many other organs throughout the body, and off-target effects of VNS could cause major side effects such as changes in blood pressure. In this study, we aimed to achieve selective stimulation of populations of vagal afferents using a multi-contact cuff electrode wrapped around the abdominal trunks of the vagus nerve. Four-contact nerve cuff electrodes were implanted around the dorsal (N = 3) or ventral (N = 3) abdominal vagus nerve in six ferrets, and the response to stimulation was measured via a 32-channel microelectrode array (MEA) inserted into the left or right nodose ganglion. Selectivity was characterized by the ability to evoke responses in MEA channels through one bipolar pair of cuff contacts but not through the other bipolar pair. We demonstrated that it was possible to selectively activate subpopulations of vagal neurons using abdominal VNS. Additionally, we quantified the conduction velocity of evoked responses to determine what types of nerve fibers (i.e., Aδ vs. C) responded to stimulation. We also quantified the spatial organization of evoked responses in the nodose MEA to determine if there is somatotopic organization of the neurons in that ganglion. Finally, we demonstrated in a separate set of three ferrets that stimulation of the abdominal vagus via a four-contact cuff could selectively alter gastric myoelectric activity, suggesting that abdominal VNS can potentially be used to control GI function.


Assuntos
Estimulação do Nervo Vago , Nervo Vago/fisiologia , Animais , Eletrodos , Potenciais Evocados , Furões , Trato Gastrointestinal/inervação , Neurônios/fisiologia , Gânglio Nodoso/fisiologia , Estimulação do Nervo Vago/métodos
6.
J Vestib Res ; 31(5): 327-344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33646187

RESUMO

We present diagnostic criteria for motion sickness, visually induced motion sickness (VIMS), motion sickness disorder (MSD), and VIMS disorder (VIMSD) to be included in the International Classification of Vestibular Disorders. Motion sickness and VIMS are normal physiological responses that can be elicited in almost all people, but susceptibility and severity can be high enough for the response to be considered a disorder in some cases. This report provides guidelines for evaluating signs and symptoms caused by physical motion or visual motion and for diagnosing an individual as having a response that is severe enough to constitute a disorder.   The diagnostic criteria for motion sickness and VIMS include adverse reactions elicited during exposure to physical motion or visual motion leading to observable signs or symptoms of greater than minimal severity in the following domains: nausea and/or gastrointestinal disturbance, thermoregulatory disruption, alterations in arousal, dizziness and/or vertigo, headache and/or ocular strain. These signs and/or symptoms occur during the motion exposure, build as the exposure is prolonged, and eventually stop after the motion ends. Motion sickness disorder and VIMSD are diagnosed when recurrent episodes of motion sickness or VIMS are reliably triggered by the same or similar stimuli, severity does not significantly decrease after repeated exposure, and signs/symptoms lead to activity modification, avoidance behavior, or aversive emotional responses.   Motion sickness/MSD and VIMS/VIMSD can occur separately or together. Severity of symptoms in reaction to physical motion or visual motion stimuli varies widely and can change within an individual due to aging, adaptation, and comorbid disorders. We discuss the main methods for measuring motion sickness symptoms, the situations conducive to motion sickness and VIMS, and the individual traits associated with increased susceptibility. These additional considerations will improve diagnosis by fostering accurate measurement and understanding of the situational and personal factors associated with MSD and VIMSD.


Assuntos
Enjoo devido ao Movimento , Consenso , Humanos , Movimento (Física) , Enjoo devido ao Movimento/diagnóstico , Vertigem , Visão Ocular
9.
Am J Physiol Regul Integr Comp Physiol ; 318(3): R481-R492, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31940234

RESUMO

The vestibular system contributes to regulating sympathetic nerve activity and blood pressure. Initial studies in decerebrate animals showed that neurons in the rostral ventrolateral medulla (RVLM) respond to small-amplitude (<10°) rotations of the body, as in other brain areas that process vestibular signals, although such movements do not affect blood distribution in the body. However, a subsequent experiment in conscious animals showed that few RVLM neurons respond to small-amplitude movements. This study tested the hypothesis that RVLM neurons in conscious animals respond to signals from the vestibular otolith organs elicited by large-amplitude static tilts. The activity of approximately one-third of RVLM neurons whose firing rate was related to the cardiac cycle, and thus likely received baroreceptor inputs, was modulated by vestibular inputs elicited by 40° head-up tilts in conscious cats, but not during 10° sinusoidal rotations in the pitch plane that affected the activity of neurons in brain regions providing inputs to the RVLM. These data suggest the existence of brain circuitry that suppresses vestibular influences on the activity of RVLM neurons and the sympathetic nervous system unless these inputs are physiologically warranted. We also determined that RVLM neurons failed to respond to a light cue signaling the movement, suggesting that feedforward cardiovascular responses do not occur before passive movements that require cardiovascular adjustments.


Assuntos
Estado de Consciência/fisiologia , Bulbo/fisiologia , Neurônios/fisiologia , Vestíbulo do Labirinto/fisiologia , Potenciais de Ação/fisiologia , Animais , Gatos , Pressorreceptores/fisiologia , Sistema Nervoso Simpático/fisiologia
10.
Front Neurol ; 11: 620817, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391176

RESUMO

Considerable evidence shows that the vestibular system contributes to adjusting sympathetic nervous system activity to maintain adequate blood pressure during movement and changes in posture. However, only a few prior experiments entailed recordings in conscious animals from brainstem neurons presumed to convey baroreceptor and vestibular inputs to neurons in the rostral ventrolateral medulla (RVLM) that provide inputs to sympathetic preganglionic neurons in the spinal cord. In this study, recordings were made in conscious felines from neurons in the medullary lateral tegmental field (LTF) and nucleus tractus solitarius (NTS) identified as regulating sympathetic nervous system activity by exhibiting changes in firing rate related to the cardiac cycle, or cardiac-related activity (CRA). Approximately 38% of LTF and NTS neurons responded to static 40° head up tilts with a change in firing rate (increase for 60% of the neurons, decrease for 40%) of ~50%. However, few of these neurons responded to 10° sinusoidal rotations in the pitch plane, in contrast to prior findings in decerebrate animals that the firing rates of both NTS and LTF neurons are modulated by small-amplitude body rotations. Thus, as previously demonstrated for RVLM neurons, in conscious animals NTS and LTF neurons only respond to large rotations that lead to changes in sympathetic nervous system activity. The similar responses to head-up rotations of LTF and NTS neurons with those documented for RVLM neurons suggest that LTF and NTS neurons are components of the vestibulo-sympathetic reflex pathway. However, a difference between NTS/LTF and RVLM neurons was variability in CRA over time. This variability was significantly greater for RVLM neurons, raising the hypothesis that the responsiveness of these neurons to baroreceptor input is adjusted based on the animal's vigilance and alertness.

11.
PLoS One ; 14(10): e0223279, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31626659

RESUMO

Although electrogastrography (EGG) could be a critical tool in the diagnosis of patients with gastrointestinal (GI) disease, it remains under-utilized. The lack of spatial and temporal resolution using current EGG methods presents a significant roadblock to more widespread usage. Human and preclinical studies have shown that GI myoelectric electrodes can record signals containing significantly more information than can be derived from abdominal surface electrodes. The current study sought to assess the efficacy of multi-electrode arrays, surgically implanted on the serosal surface of the GI tract, from gastric fundus-to-duodenum, in recording myoelectric signals. It also examines the potential for machine learning algorithms to predict functional states, such as retching and emesis, from GI signal features. Studies were performed using ferrets, a gold standard model for emesis testing. Our results include simultaneous recordings from up to six GI recording sites in both anesthetized and chronically implanted free-moving ferrets. Testing conditions to produce different gastric states included gastric distension, intragastric infusion of emetine (a prototypical emetic agent), and feeding. Despite the observed variability in GI signals, machine learning algorithms, including k-nearest neighbors and support vector machines, were able to detect the state of the stomach with high overall accuracy (>75%). The present study is the first demonstration of machine learning algorithms to detect the physiological state of the stomach and onset of retching, which could provide a methodology to diagnose GI diseases and symptoms such as nausea and vomiting.


Assuntos
Trato Gastrointestinal/fisiopatologia , Aprendizado de Máquina , Modelos Biológicos , Vômito/fisiopatologia , Algoritmos , Animais , Eletromiografia , Furões , Humanos , Lactente , Recém-Nascido , Vômito/diagnóstico , Vômito/etiologia
15.
Physiol Rep ; 6(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29333722

RESUMO

It is well-documented that feedforward cardiovascular responses occur at the onset of exercise, but it is unclear if such responses are associated with other types of movements. In this study, we tested the hypothesis that feedforward cardiovascular responses occur when a passive (imposed) 60° head-up tilt is anticipated, such that changes in heart rate and carotid artery blood flow (CBF) commence prior to the onset of the rotation. A light cue preceded head-up tilts by 10 sec, and heart rate and CBF were determined for 5-sec time periods prior to and during tilts. Even after these stimuli were provided for thousands of trials spanning several months, no systematic changes in CBF and heart rate occurred prior to tilts, and variability in cardiovascular adjustments during tilt remained substantial over time. We also hypothesized that substitution of 20° for 60° tilts in a subset of trials would result in exaggerated cardiovascular responses (as animals expected 60° tilts), which were not observed. These data suggest that cardiovascular adjustments during passive changes in posture are mainly elicited by feedback mechanisms, and that anticipation of passive head-up tilts does not diminish the likelihood that a decrease in carotid blood flow will occur during the movements.


Assuntos
Pressão Sanguínea , Circulação Cerebrovascular , Retroalimentação Fisiológica , Postura , Animais , Artérias Carótidas/fisiologia , Gatos , Feminino , Masculino , Sistema Nervoso Simpático/fisiologia
16.
J Neurophysiol ; 119(3): 765-766, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29361667

RESUMO

The Journal of Neurophysiology continues to evolve to meet the needs of its authors and readers. This article summarizes recent changes intended to improve our evaluation and communication of neuroscience research.


Assuntos
Políticas Editoriais , Neurofisiologia , Publicações Periódicas como Assunto , Humanos , Revisão da Pesquisa por Pares
17.
FASEB J ; 31(10): 4216-4225, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28821637

RESUMO

Every institution that is involved in research with animals is expected to have in place policies and procedures for the management of allegations of noncompliance with the Animal Welfare Act and the U.S. Public Health Service Policy on the Humane Care and Use of Laboratory Animals. We present here a model set of recommendations for institutional animal care and use committees and institutional officials to ensure appropriate consideration of allegations of noncompliance with federal Animal Welfare Act regulations that carry a significant risk or specific threat to animal welfare. This guidance has 3 overarching aims: 1) protecting the welfare of research animals; 2) according fair treatment and due process to an individual accused of noncompliance; and 3) ensuring compliance with federal regulations. Through this guidance, the present work seeks to advance the cause of scientific integrity, animal welfare, and the public trust while recognizing and supporting the critical importance of animal research for the betterment of the health of both humans and animals.-Hansen, B. C., Gografe, S., Pritt, S., Jen, K.-L. C., McWhirter, C. A., Barman, S. M., Comuzzie, A., Greene, M., McNulty, J. A., Michele, D. E., Moaddab, N., Nelson, R. J., Norris, K., Uray, K. D., Banks, R., Westlund, K. N., Yates, B. J., Silverman, J., Hansen, K. D., Redman, B. Ensuring due process in the IACUC and animal welfare setting: considerations in developing noncompliance policies and procedures for institutional animal care and use committees and institutional officials.


Assuntos
Comitês de Cuidado Animal , Experimentação Animal , Bem-Estar do Animal , Animais de Laboratório , Direitos Civis , Experimentação Animal/normas , Bem-Estar do Animal/legislação & jurisprudência , Animais , DNA/metabolismo , Humanos
18.
Front Neurol ; 8: 112, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28396651

RESUMO

This review considers the integration of vestibular and other signals by the central nervous system pathways that participate in balance control and blood pressure regulation, with an emphasis on how this integration may modify posture-related responses in accordance with behavioral context. Two pathways convey vestibular signals to limb motoneurons: the lateral vestibulospinal tract and reticulospinal projections. Both pathways receive direct inputs from the cerebral cortex and cerebellum, and also integrate vestibular, spinal, and other inputs. Decerebration in animals or strokes that interrupt corticobulbar projections in humans alter the gain of vestibulospinal reflexes and the responses of vestibular nucleus neurons to particular stimuli. This evidence shows that supratentorial regions modify the activity of the vestibular system, but the functional importance of descending influences on vestibulospinal reflexes acting on the limbs is currently unknown. It is often overlooked that the vestibulospinal and reticulospinal systems mainly terminate on spinal interneurons, and not directly on motoneurons, yet little is known about the transformation of vestibular signals that occurs in the spinal cord. Unexpected changes in body position that elicit vestibulospinal reflexes can also produce vestibulosympathetic responses that serve to maintain stable blood pressure. Vestibulosympathetic reflexes are mediated, at least in part, through a specialized group of reticulospinal neurons in the rostral ventrolateral medulla that project to sympathetic preganglionic neurons in the spinal cord. However, other pathways may also contribute to these responses, including those that dually participate in motor control and regulation of sympathetic nervous system activity. Vestibulosympathetic reflexes differ in conscious and decerebrate animals, indicating that supratentorial regions alter these responses. However, as with vestibular reflexes acting on the limbs, little is known about the physiological significance of descending control of vestibulosympathetic pathways.

19.
Exp Brain Res ; 235(4): 1195-1207, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28188328

RESUMO

The integration of inputs from vestibular and proprioceptive sensors within the central nervous system is critical to postural regulation. We recently demonstrated in both decerebrate and conscious cats that labyrinthine and hindlimb inputs converge onto vestibular nucleus neurons. The pontomedullary reticular formation (pmRF) also plays a key role in postural control, and additionally participates in regulating locomotion. Thus, we hypothesized that like vestibular nucleus neurons, pmRF neurons integrate inputs from the limb and labyrinth. To test this hypothesis, we recorded the responses of pmRF neurons to passive ramp-and-hold movements of the hindlimb and to whole-body tilts, in both decerebrate and conscious felines. We found that pmRF neuronal activity was modulated by hindlimb movement in the rostral-caudal plane. Most neurons in both decerebrate (83% of units) and conscious (61% of units) animals encoded both flexion and extension movements of the hindlimb. In addition, hindlimb somatosensory inputs converged with vestibular inputs onto pmRF neurons in both preparations. Pontomedullary reticular formation neurons receiving convergent vestibular and limb inputs likely participate in balance control by governing reticulospinal outflow.


Assuntos
Neurônios Motores/fisiologia , Formação Reticular/citologia , Vestíbulo do Labirinto/fisiologia , Potenciais de Ação/fisiologia , Animais , Mapeamento Encefálico , Gatos , Estado de Consciência , Estado de Descerebração , Estimulação Elétrica , Feminino , Membro Posterior/fisiologia , Masculino , Movimento/fisiologia , Rotação , Vestíbulo do Labirinto/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...